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Abstract
The classical Lie analysis provides a useful technique for the solution
of ordinary differential equations via point symmetries/transformations.
Unfortunately, the requirement that an nth-order equation possesses at least an
n-dimensional solvable Lie algebra of symmetries is only satisfied by a select
number of equations. We provide a class of second-order ordinary differential
equations with less than the required two Lie point symmetries that can be
solved via nonlocal transformations.

PACS number: 0230H

1. Introduction

The Lie theory of extended groups applied to ordinary differential equations is one of the most
successful techniques for the solution of these equations. Once the appropriate number of
symmetries have been determined for a particular equation, the route to its solution follows
a well defined algorithm [17]. However, few equations admit the required number of point
symmetries to enable reduction to quadratures.

In an attempt to overcome this limitation, various extensions of the classical Lie approach
have been devised. One such extension is due to the observance of hidden symmetries (i.e.
point symmetries that arise unexpectedly in the increase/decrease of order of an equation)
by Olver [17] which was systematically investigated (and named) by Abraham-Shrauner and
Guo [2]. These symmetries have their origin in nonlocal symmetries of the original equation.
(The idea of extending the local applicability of Lie groups is not new. An early consideration
is due to Mostow [15].)

Clearly, the identification of nonlocal symmetries of equations would suggest that they
can be reduced to quadratures despite the lack of point symmetries. However, it is difficult to
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Table 1. 3D Lie algebras appropriate to third-order equations.

Type Nonzero commutation relations

3A1

A1 ⊕ A2 [G1, G3] = G1

A3,1 [G2, G3] = G1

A3,2 [G1, G3] = G1 [G2, G3] = G1 + G2

A3,3 [G1, G3] = G1 [G2, G3] = G2

A3,4 [G1, G3] = G1 [G2, G3] = −G2

Aa
3,5 (0 < |a| < 1) [G1, G3] = G1 [G2, G3] = aG2

A3,6 [G1, G3] = −G2 [G2, G3] = G1

Ab
3,7 (b > 0) [G1, G3] = bG1 − G2 [G2, G3] = G1 + bG2

A3,8 [G1, G2] = G1 [G2, G3] = G3 [G3, G1] = −2G2

A3,9 [G1, G2] = G3 [G2, G3] = G1 [G3, G1] = G2

directly calculate nonlocal symmetries although some ideas were presented in [8]. The most
successful techniques have involved indirect methods [3, 9].

The idea behind [9] arose as a result of the solution of a second-order equation not
possessing Lie point symmetries [1]. This second-order equation was shown to be linked (via
a nonlocal transformation) to another second-order equation possessing two point symmetries.
As a result, the original equation could be solved. Govinder and Leach [9] classified
second-order equations not possessing Lie point symmetries using this approach. Adam and
Mahomed [3] proceeded in a similar manner, but confined their work to first-order equations.

Here we hope to fill the gap between those two bodies of work. We wish to relate
second-order equations with fewer than two point symmetries to those with at least two point
symmetries. This will enable the original equations to be solved. Our approach will be via
third-order equations. We consider all third-order equations invariant under three-dimensional
Lie algebras. Each equation will be reduced via its point symmetries and the symmetries of the
resulting second-order equations will be investigated. The nonlocal transformations between
those reduced equations with fewer than two point symmetries and those with at least two
point symmetries will then be determined.

2. Nonlocal transformations of second-order ODEs

We undertake a systematic reduction of all third-order equations invariant under three-
dimensional Lie algebras. In what follows we utilize the Mubarakzyanov classification [16]
scheme as explained in [13, 14, 18]. We take our equations and Lie algebras from the latter
works. They have recently appeared in [11]. (Note that the forms of some of the algebras
listed below do not conform exactly to those in [18]: e.g., A1 ⊕ A2 and A3,8. However, a
simple change of basis will bring both tables into agreement.)

There are 11 real three-dimensional Lie algebras (see table 1). We ignore 3A1 and one
representation of A3,3 (i.e. AII

3,3) as the equations invariant under these Lie algebras are linear.
As a result those equations admit larger classes of Lie algebras. The equation invariant under
AI

3,8 admits a six-dimensional Lie algebra and also falls outside the scope of this paper. (This
observation is omitted in [11, 12] where the equation is presented as being invariant under
AI

3,8 only.) The same is true for the equation invariant under AI
3,9 while AII

3,9 does not admit a
third-order equation.

We illustrate the general procedure via A3,1: this algebra admits the equation

y ′′′ = 
[y ′′] (1)
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and has the following canonical symmetry representation:

G1 = ∂

∂y
(2)

G2 = ∂

∂x
(3)

G3 = x
∂

∂y
. (4)

Using each of these three symmetries, we reduce equation (1) to second-order equations.
Reduction via G1 yields

u = x v = y ′ (5)

y ′′ = v′ (6)

y ′′′ = v′′. (7)

Equation (1) becomes

v′′ = 
[v′]. (8)

The reduction variables obtained via G1 result in the symmetries G2 and G3 transforming
to

X2 = ∂

∂u
(9)

X3 = ∂

∂v
. (10)

Since both are point symmetries of (8) we can reduce this equation to quadratures.
Reduction via G2 yields

u = y v = y ′ (11)

y ′′ = vv′ (12)

y ′′′ = v2v′′ + v(v′)2. (13)

Thus (1) reduces to

v′′ = − (v′)2

v
+

1

v2

[vv′]. (14)

From G1 we obtain

X1 = ∂

∂u
(15)

but G3 cannot be rewritten in terms of the new coordinates as a local symmetry. As a result, (14)
cannot be directly reduced to quadratures.

Finally considering G3 we obtain

u = x v = y ′ − y

x
(16)

y ′′ = v′ +
v

u
(17)

y ′′′ = v′′ +
v′

u
− v

u2
. (18)

The reduced equation is

v′′ = v

u2
− v′

u
+ 


[
v′ +

v

u

]
. (19)
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Table 2. Second-order equations admitting 2D Lie algebras.

Type [G1, G2] Symmetries Invariant equation

I 0 G1 = ∂

∂T
Q′′ = F(Q′)

G2 = ∂

∂Q

II 0 G1 = ∂

∂Q
Q′′ = F(T )

G2 = T
∂

∂Q

III G1 G1 = ∂

∂Q
T Q′′ = F(Q′)

G2 = T
∂

∂T
+ Q

∂

∂Q

IV G1 G1 = ∂

∂Q
Q′′ = Q′F(T )

G2 = Q
∂

∂Q

G1 takes on the new form

X1 = 1

u

∂

∂v
. (20)

Once again, reduction results in the loss of a point symmetry, this time G2. This implies
that (19) cannot be directly reduced to quadratures.

We have obtained one second-order equation that can be directly reduced to quadratures
and two which cannot from a single third-order equation. To enable us to reduce the latter
two equations to quadratures, we must first effect nonlocal transformations into the former
equation. These transformations are given by

u2 =
∫

v1 du1

v2 = v1

(21)

and
u3 = u1

v3 = v1 −
∫

v1 du1

u1
.

(22)

(Here the variables ui and vi refer to the reduction variables obtained from the symmetry Gi .)
To fully utilize the above procedure, we need to investigate the solution of the second-

order equations admitting two-dimensional Lie algebras. There are two 2D Lie algebras (each
admitting two representations) (see table 2). The solutions of these equations can be easily
calculated [10]. We recall those for easy reference.

In the case of type I equations, the solution is given by

Q =
∫

φ(T + c0) dT + c1 (23)

where the ci are constants of integration and φ is obtained by solving∫
dQ′

F(Q′)
= T + c0 (24)

for Q′. For type II equations the solution is

Q =
∫ ( ∫

F(T ) dT

)
dT + c1T + c0. (25)
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In the case of type III equations the solution is

Q =
∫

φ(ln T + c0) dT + c1 (26)

where φ is obtained by solving∫
dQ′

F(Q′)
= ln T + c1 (27)

for Q′ and for type IV we have

Q = c1

∫
exp

( ∫
F(T ) dT

)
dT + c0. (28)

In the case of (8), we replace u with T and v with Q and utilize (23) as solution.
We apply the above procedure to all appropriate three-dimensional Lie algebras. Below

follows a list of the second-order equations with fewer than two symmetries that can be solved
via nonlocal transformations. Each set is followed by the nonlocal transformation linking them
to an equation(s) with two point symmetries. The transformation between one of the equa-
tions with two symmetries and the forms in table 2 is provided so that the route to solution is
clear. In addition, the form of F (needed in table 2) is given in terms of the new variables and 
.

Algebra A1 ⊕ AI
2

v′′
3 = − (v′

3)
2

v3
+

3v′
3

v3
− 2

v3
+

(v′
3 − 1)

3
2

v
1
2
3




[
v′

3 − 1

v3

]
(29)

u3 = u1 v3 = v1

∫
1

v1
du1 (30)

u3 =
∫

v2 du2 v3 = u2v2 (31)

v′′
1 = − (v′

1)
2

v1
+

(
(v′

1)
3

v1

)1
2




[
v′

1

v1

]
(32)

v′′
2 = v′

2
3
2 


[
v′

2

v2
2

]
. (33)

The latter equation is of type III. We employ the transformation

Q = u2 T = 1

v2
(34)

with

F(Q′) = −2Q′ + Q′

[
− 1

Q′

]
(35)

and the solution is given by (26).

Algebra A1 ⊕ AII
2

v′′
3 = −(v′

3)
2 + 2v′

3

v3 − u3
+ (v′

3)
2
[(v3 − u3)v

′
3] (36)

u3 =
∫

v1 du1

u1
v3 = v1 (37)
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u3 =
∫

v2

u2
du2 v3 = v2 +

∫
v2

u2
du2 (38)

v′′
1 = (v′

1)
2
[u1v

′
1] (39)

v′′
2 = − v′

2

u2
+

v2

u2
2

+

(
v′

2 +
v2

u2

)2


[u2v
′
2 + v2]. (40)

This time, the former equation is of type I. The transformation used is

T = v1 Q = log u1 (41)

with

F(Q′) = −Q′2 − Q′

[

1

Q′

]
. (42)

The solution is given by (23).

Algebra A3,1

v′′
2 = − (v′

2)
2

v2
+

1

v2
2


[v2v
′
2] (43)

v′′
3 = v3

u2
3

− v′
3

u3
+ 


[
v′

3 +
v3

u3

]
(44)

u2 =
∫

v1 du1 v2 = v1 (45)

u3 = u1 v3 = v1 −
∫

v1 du1

u1
(46)

v′′
1 = 
[v′

1]. (47)

This equation is of type I. Setting

T = u1 Q = v1 (48)

with

F(Q′) = 
[Q′] (49)

allows one to obtain the solution from (23).

Algebra AI
3,2

v′′
3 = −(v′

3)
2 + 2v′

3

v3 − u3 − 1
+

1

(v3 − u3 − 1)2

+

[
[(v3 − u3 − 1)v′

3 + 1]2

(v3 − u3 − 1)2

]

[exp(v3(v3 − u3 − 1)v′

3 + 1)] (50)

u3 =
∫

v1 du1

u1
− log u1 v3 = v1 − log u1 (51)

u3 = u2∫
1
v2

du2
− log

[ ∫
1

v2
du2

]
v3 = v2 − log

[ ∫
1

v2
du2

]
(52)

v′′
1 = (v′

1)
2
[v′

1 exp v1] (53)

v′′
2 = − (v′

2)
2

v2
+ (v′

2)
2
[v2v

′
2 exp v2]. (54)
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The former equation is of type III. The transformation we employ is

Q = u1 T = ev1 (55)

with F given by

F(Q′) = −Q′
(

1 + 


[
1

Q′

])
(56)

and the solution by (26).

Algebra AII
3,2

v′′
2 = − v′

2

u2
+

v2

u2
2

+

(
v′

2 +
v2

u2

)



[
exp u2

v′
2 + v2

u2

]
(57)

v′′
3 = (v′

3)
2

1 − v3
+

v3

(v3 − 1)

[
v2

3

(v3 − 1)
+ v′

3

]
+

[(v3 − 1)v′
3 + v2

3]

(v3 − 1)2



[
exp(−u3)

(v3 − 1)v′
3 + v2

3

]
(58)

u2 = u1 v2 = v1 −
∫

v1 du1

u1
(59)

u3 = log

[ ∫
v1 du1

]
− u1 v3 = v1∫

v1 du1
(60)

v′′
1 = v′

1


[
exp u1

v′
1

]
. (61)

This equation is of type III. We utilize

Q = v1 T = eu1 (62)

with

F(Q′) = −Q′
(

1 − 


[
1

Q′

])
(63)

and the solution is given by (26).

Algebra AI
3,3

v′′
3 = −(v′

3)
2 + 2v′

3

(v3 − u3)
+ (v′

3)
2
[v3] (64)

u3 = u1∫
1
v1

du1
v3 = v1 (65)

u3 =
∫

v2 du2

u2
v3 = v2 (66)

v′′
1 = −(v′

1)
2

v1
+ (v′

1)
2
[v1] (67)

v′′
2 = (v′

2)
2
[v2]. (68)

The latter equation is of type IV and is hence linearizable. All we need do is interchange the
independent and dependent variables, namely

Q = u2 T = v2 (69)
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with

F(T ) = −
[T ]. (70)

The solution is given by (28).

Algebra AI
3,4

v′′
3 = −u3(v

′
3)

2 + 2v3v
′
3 − 6

u3v3 + 1
+

18v3
3

(u3v3 + 1)2
+

((u3v3 + 1)v′
3 + 2v2

3)
4
3

(u3v3 + 1)2

×






 u3

v
1
2
3

+
1

v
3
2
3


 v′

3 + 2v
1
2
3


 (71)

u3 = u1

∫
1

v1
du1 v3 = v1

u2
1

(72)

u3 = u2

∫
v2 du2 v3 = v2

(
∫

v2 du2)2
(73)

v′′
1 = − (v′

1)
2

v1
+

(
(v′

1)
2

v1

)2
3





 v′

1

v
1
2
1


 (74)

v′′
2 = (v′

2)
4
3 



 v′

2

v
3
2
2


 . (75)

The former equation is of type III. Here we use

Q = u1 T = (v1)
1/2 (76)

with

F(Q′) = Q′ − 1

2
(Q′)

5
3 


[
2

Q′

]
(77)

and the solution is given by (26).

Algebra AII
3,4

v′′
3 = 3v3v

′
3

u3(2v3 − u3)
− 3v3

3

u2
3(2v3 − u3)2

− (u3 − v3)
10
3

u2
3(2v3 − u3)





 (2v3 − u3)v

′
3

u
1
2
3

− v2
3

u
3
2
3


 (78)

u3 = (
∫

v1 du1)
2

u1
v3 = v1

∫
v1 du1 (79)

u3 = (u2
∫

v2
u2

du2)
2

u2
v3 =

(
v2 +

∫
v2

u2
du2

)(
u2

∫
v2

u2
du2

)
(80)

v′′
1 = v′

1
5
3 
[u

3
2
1 v′

1] (81)

v′′
2 = − v′

2

u2
+

v2

u2
2

+

(
v′

2 +
v2

u2

)5
3


[u
3
2
2 v′

2 + u
1
2
2 v2]. (82)

Here, the latter equation is of type III. We utilize

T = (u2)
1/2 Q = u2v2 (83)



Solution of ordinary differential equations via nonlocal transformations 1149

with

F(Q′) = 3Q′ + (2Q′5)(1/3)


[
Q′

2

]
(84)

and the solution is given by (26).

Algebra AaI
3,5

v′′
3 = − (v′

3)
2 + (a − 3)v′

3

v3 − au3
− (a − 1)(a − 2)v3

(v3 − au3)2
+ (v3 − au3)

1−a
a−2

[
v′

3 +
(a − 1)v3

v3 − au3

] a−3
a−2

×


[
v

1
a−1

((
1 − au3

v3

)
v′

3 + a − 1

)]
(85)

u3 = u1

(
∫

1
v1

du1)a
v3 = v1

(
∫

1
v1

du1)a−1
(86)

u3 =
∫

v2 du2

ua
2

v3 = v2

ua−1
2

(87)

v′′
1 = −v′

1

v1
+

(v1v
′
1)

a−3
a−2

v2
1


[v′
1v

1
a−1

1 ] (88)

v′′
2 = v′

2
a−3
a−2 
[v′

2v
2−a
a−1

2 ]. (89)

The latter is of type III. We utilize

T = (v2)
1/(a−1) Q = u2 (90)

with

F(Q′) = (a − 2)Q′ − (Q′)
2a−3
a−2

(a − 1)
1

a−2




[(
(Q′)2a−3

a − 1

) 1
a−2

]
(91)

and the solution is given by (26).

Algebra A
1
2 I

3,5

v′′
3 = −(v′

3 − 1)v′
3 +

1

v3(v3 − 2u3)

[(v3 − 2u3)v

′
3 + v3] (92)

u3 = u1

(
∫

1
v1

du1)2
v3 = v1∫

1
v1

du1
(93)

u3 =
∫

v2 du2

u2
2

v3 = v2

u2
(94)

v′′
1 = − (v′

1)
2

v1
+

1

v3
1


[v1v
′
1] (95)

v′′
2 = 1

v2

[v′

2]. (96)

Once again the latter equation is of type III. Here we choose

T = 1

v2
Q = u2 (97)
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and set

F(Q′) = −Q′3

[

1

Q′

]
. (98)

The solution is given by (26).

Algebra AaII
3,5

v′′
3 = − (1 − a)(v′

3)
2

[(1 − a)v3 − u3]
− [(1 − a)(3av2

3 + 2u2
3(u3 − v3)) − au2

3v3]v′
3

u2
3[(1 − a)v3 − u3]2

− av3
3(2a − 1)

u2
3[(1 − a)v3 − u3]2

+
[(1 − a)u3v3v

′
3 + u2

3v
′
3 + av2

3]
2−3a
1−2a

u2
3[(1 − a)v3 − u3]2

×
[v3v
′
3(1 − a)u

a
1−a

3 − u
1

1−a

3 v′
3 + av2

3u
2a−1
1−a

3 ] (99)

u3 = [
∫

v1 du1]1−a

u1
v3 = v1

[
∫

v1 du1]a
(100)

u3 = [u2
∫

v2
u2

du2]1−a

u2
v3 = v2 +

∫
v2
u2

du2

[u2
∫

v2
u2

du2]a
(101)

v′′
1 = v′

1
2−3a
1−2a 
[u

2a−1
a−1

1 v′
1] (102)

v′′
2 = − v′

2

u2
+

v2

u2
2

+

(
v′

2 − v2

u2

)2−3a
1−2a


[u
2a−1
a−1

2 v′
2 + v2u

a
a−1

2 ]. (103)

The former equation is of type III. We employ the transformation

T = (u1)
a/(1−a) Q = v1 (104)

with

F(Q′) = 1 − 2a

a
Q′ +

(
1 − a

a

)a/(2a−1)

(Q′)
2−3a
1−2a 


[
a

1 − a
Q′

]
(105)

and the solution is given by (26).

Algebra A
1
2 II

3,5

v′′
3 = (−(v′

3)
2 + v′

3)

(v3 − 2u3)
+

1

(v3 − 2u3)2

[(v3 − 2u3)v

′
3 + v3] (106)

u3 =
∫

v1 du1

u2
1

v3 = v1

u1
(107)

u3 =
∫

v2
u2

du2

u2
v3 = v2 +

∫
v2
u2

du2

u2
(108)

v′′
1 = 1

u1

[v′

1] (109)

v′′
2 = − v′

2

u2
+

v2

u2
2

+
1

u2



[
v′

2 +
v2

u2

]
. (110)

The latter equation is of type III. We use the transformation

T = u2
2 Q = u2v2 (111)
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with

F(Q′) = 
[2Q′]
4

. (112)

The solution is given by (26).

3. Discussion

We submit this list of equations as a contribution to the class of second-order ordinary
differential equations that can be reduced to quadratures. It remains to consider other third-
order equations invariant under larger (>3)-dimensional Lie groups. A list of the relevant
equations appears in [11]. This work is ongoing.

Here we have been interested in producing second-order equations that can be reduced
to quadratures in spite of the sparsity of point symmetries. We have not focused on the
actual solution of the third-order equations as they have merely been utilized as a tool in our
calculations. The study of third-order equations [5, 12] and their first integrals [6, 7] has also
received attention.

While point symmetries of differential equations have always played (and we believe will
continue to play) an important role in the reduction of order of equations, it is evident that
nonlocal transformations (symmetries) also have their special role to play. The results in [3,9]
and those of this paper testify to this.

As a final remark we note that most results dealing with nonlocal transformations or
symmetries have been obtained in a purely theoretic setting. However, recently [4] nonlocal
transformations have been utilized in the solution of the Einstein field equations. Hopefully,
the classes of solutions presented here will have similar applications.
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